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Introduction

• Surface mesh - set of non-overlapping, tiling polygons
approximating a smooth surface in <3

• Surface mesh quality important for meshing and analysis

• Surface mesh quality - Mesh Size Gradation, Element Shape
(e.g., condition number shape measure)

• Effects of poor surface mesh quality

� May lead to failure of volume meshing algorithm

� Causes poorer quality of volume elements

� Influences accuracy of numerical simulations

Garimella, Shashkov
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Improvement of Surface Mesh Quality

• Can improve element quality and mesh gradation by:

� Local mesh modifications like edge split, edge swap, etc.
(triangular meshes only)

� repositioning nodes or smoothing (useful for all meshes).

• Focus on element shape improvement by node repositioning

• Must preserve surface and mesh characteristics during
improvement

• Minimizing surface and mesh changes important for:

� Preservation of forces like surface tension

� Accuracy of solution transfer between meshes

Garimella, Shashkov
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Surface Quality Optimization w.r.t. Parametric Coordinates

• Minimize change to surface characteristics by constraining
nodes to

� Smooth surface underlying surface mesh, or

� Discrete surface formed by faces of surface mesh

• Common to constrain nodes to surface by repositioning in 2D
parametric space of surface

• Global parametric space usually unavailable for discrete
surfaces

• Global parametric space construction can be expensive

Garimella, Shashkov
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Surface Quality Optimization Using Local Parametrization

• Reposition nodes in LOCAL instead of global parametric space

• Local parametric space - barycentric mapping of triangular
element or triangular facet of element

• Keep track of original mesh element and triangular facet in
which node is moving

• Vertex in surface interior - containing element is mesh face

• Vertex on surface boundary - containing element is boundary
mesh edge

• If node moves out of element, switch to parametric space of
adjacent element

Garimella, Shashkov
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Optimization w.r.t. Parametric Coordinates

• Consider Gradient Based Optimization of Surface Mesh Quality
Function φ

• φ = φ(xi) and xi = f(si), where

� xi are real coordinates of node i,

� si are parametric coordinates of node in containing element.

• Function value at given parametric location, si, is computed by
φ(f(si))

• Gradient w.r.t. parametric coordinates, si, evaluated numerically

• Line search for minimum is conducted along gradient direction
in local parametric space

Garimella, Shashkov
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Line Search or 1D Minimization

• Find distance, α, along gradient direction, d, so that

� Objective function is minimized, or

� Line search constraints are encountered

• Line Search Constraints:

� Parametric Bounds: If parametric bounds are violated, vertex
moves out of the containing element and off the surface

� Mesh Validity: Large movement along search direction
makes some connected elements invalid

• Algorithm uses incremental stepping with step size control

Garimella, Shashkov
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Line Search Constraints

(a) Parametric Bounds Constraint (b) Mesh Validity Constraint
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Parameter Update and Parameterization Change

• Using step size α from line search, update parameters

• snew = sold + αd

• If line search stops at minimum or stops due to mesh invalidity

- continue optimization with new gradient calculation

• If line search stops at parametric bounds

- restart optimization in parametric space of adjacent
element/facet

• If search switches too much between two faces/facets

- proceed along common edge

Garimella, Shashkov
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Optimization of Global Function by Local Iterations

• Desirable to reposition all mesh vertices simultaneously by
minimizing global function

• However, local parametric bounds impose too strong a
constraint

• Line search seeks single step size for movement of all vertices

• Even if one vertex goes out of parametric bounds, line search
must halt

• So, reposition vertices one at a time by minimizing a local
piece of global objective function

• Iterate over all vertices until vertex movement is minimal

Garimella, Shashkov
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Illustration of Vertex Movement

Minimization of Global Condition Number Objective Function (described later)

Garimella, Shashkov
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Condition Number (CN) Measure of Element Quality
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Jji = [~ep | ~eq] = Jacobian of Fj at Vi

κ(Jji) =
l2p + l2q
Aj

= CN of Jji in <2

lp = |~ep| , lq = |~eq|
Aj = (| ep × eq |) /2

= Area of 4 formed by ep, eq

κ - function of triangle lengths; rotation invariant

Therefore, κ for <2 useful for measuring triangle quality in <3
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Local Condition Number (CN) Objective Function

• Define ψci as sum of all CNs involving vertex Vi

• ψci is sum of CNs at Vi and its adjacent vertices in each face, Fj
connected to Vi

• Minimization of ψci smooths distribution of angles and edge
lengths around Vi

ψ
c
i =

∑
j

∑
k

κ(Jjk) =
∑
j

∑
k

(l2p)jk + (l2q)jk

Aj

j ∈ {j | Fj ∈ {F (Vi)}}

k ∈ {k | Vk ∈ {{V (Fj)} ∩ {V ({E(Vi)})}
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Condition Number based Optimization

• GLOBAL CN function Ψc =
∑
iψ

c
i

• Global function is sum of local functions over all vertices

• Minimize global function, Ψc, by minimizing local function, ψci ,
at each vertex, Vi

• Local minimization by non-linear conjugate gradient method

• Optimization performed w.r.t. local parametric coordinates

• Multiple iterations over all mesh vertices

• Process converged if no vertex moves significantly

Garimella, Shashkov
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Preservation of Mesh Characteristics

• CN optimization allows vertices to move as much as necessary
on the original mesh faces to minimize Ψc

• Sometimes, local refinement or anisotropy of mesh must be
preserved for solution accuracy

• Also, improved mesh must be close to original in some
applications

• Necessary for accuracy of solution transfer between meshes

• Examples:

- ALE simulations of multi-material gas dynamics

- Simulation of metal forming processes

Garimella, Shashkov
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Reference Jacobian based Optimization

• Use Reference Jacobian based optimization for improving
mesh and keeping it close to original mesh

• STEP I: Optimize Local Condition Number based function

• STEP II: Optimize Global Reference Jacobian based function

Garimella, Shashkov
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Reference Jacobian based Optimization - Step I

• Local optimization performed with CN function ψci

• Locally optimal position stored for use in Step II

• Vertex not moved to locally optimal position

Garimella, Shashkov
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Reference Positions, Edges and Jacobians

• Locally optimal position is stored as REFERENCE POSITION

• Two REFERENCE EDGES formed for each real edge

• Each reference edge uses real position at one end and
reference position at the other

• REFERENCE JACOBIAN MATRIX, JR:

- Jacobian matrix formed by pair of reference edges

Garimella, Shashkov
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Reference Positions and Reference Edges
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Reference Jacobian (RJ) based Optimization - Step II

• Goal: Find mesh configuration that achieves compromise
between reference edge pairs

• Each reference edge has one vertex at optimal location and
one at the original location

• Therefore, final compromise mesh configuration:

� improves element quality

� is close to original mesh

Garimella, Shashkov



21

Global Reference Jacobian (RJ) Objective Function

Global RJ Objective Function ΨR:

ΨR =
∑
i

∑
j

‖Jji − JRji‖2

Aj/ARji
,

i ∈ {i | Vi ∈ {V }}, j ∈ {j | Fj ∈ {F (Vi)}}

‖.‖ is the Frobenius Norm,

JRji is Reference Jacobian Matrix of Fj of Vi,

ARji is area of 4 formed by reference edge vectors at V Ri in Fj

Garimella, Shashkov
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Local part of Global RJ Objective Function

Define ψRi as part of ΨR involving real or reference position of Vi

ψRi =
∑
j

∑
k

‖Jjk − JRjk‖2

Aj/ARjk
,

j ∈ {j | Fj ∈ {F (Vi)}}, k ∈ {k | Vk ∈ {{V (Fj)} ∩ {V ({E(V )})}}

Outer sum is over all faces, Fj, connected to Vi

Inner sum is over Vi and vertices of face, Fj, connected to Vi

Iterate over all vertices, performing local optimizations until no
further vertex movement is possible

Garimella, Shashkov
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Illustrative Example

Original mesh RJ Optimization CN Optimization

All points still on original mesh

CN optimization moves points more than RJ optimization

Garimella, Shashkov
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Example: Pig (Computer Graphics Group, U of VA

Original
Mesh

RJ Opt.
Mesh

CN Opt.
Mesh

Garimella, Shashkov
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Mesh and Surface Statistics for Pig

Kav = Normalized
mean of condition
numbers at vertices
of a face

Kav Original RJO CNO
1.0 – 1.5 3921 5124 6830
1.5 – 2.0 1734 1257 156
2.0 – 3.0 917 525 48
3.0 – 4.0 247 100 3
4.0 – 5.0 102 22 0
5.0 – 10.0 104 8 3

10.0 – 15 4 0

Surface Distortion Measure RJ Opt. CN Opt.
Hausdorff Distance (% of prob. size) 0.6 2.7
Max. Node Movement (% of prob. size) 3.1 11.14
Ave. Node Movement (% of prob. size) 0.3 1.7

Garimella, Shashkov



26

Effect of CN Optimization on 2D Polygonal Mesh

Original Mesh CN Opt. Mesh
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Fidelity of Surface Representation

CN optimized mesh (black edges) overlayed on orginal mesh
Hausdorff distance between meshes (to be computed)
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Example: Polygonal mesh of pig

Original
Mesh

RJ
Opt.
Mesh

CN
Opt.
Mesh

Garimella, Shashkov



29

Mesh Statistics for Polygonal Mesh of Pig

Kav = Normalized
mean of condition
numbers at vertices
of a face

Kav Original RJO CNO
1.0 – 1.5 1100 1774 2666
1.5 – 2.0 1017 851 306
2.0 – 3.0 736 360 48
3.0 – 4.0 113 33 6
4.0 – 5.0 25 6 1
5.0 – 7.5 21 4 0
7.5 – 10.0 11 0 1

10.0 – 15.0 3 1 1
15.0 – 3 0 0

Maximum Condition Number before Optimization: 45.07
Maximum Condition Number after RJ Optimization: 14.35
Maximum Condition Number after CN Optimization: 11.44

Garimella, Shashkov
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IGEA face model, (Cyberware, Inc.)

Original Mesh RJ Optimization CN Optimization

Garimella, Shashkov
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Mesh and Surface Statistics for Igea artifact

Kav Original RJO CNO
1.0 – 1.5 29572 37432 39764
1.5 – 2.0 7325 2371 277
2.0 – 3.0 2683 232 0
3.0 – 4.0 335 5 1
4.0 – 5.0 64 1 0
5.0 – 10.0 59 1 0

10.0 – 4 0 0

Surface Distortion Measure RJ Opt. CN Opt.

Hausdorff Distance (% of prob. size) 0.2 0.5
Max. Node Movement (% of prob. size) 1.3 3.0
Ave. Node Movement (% of prob. size) 0.2 0.4

Garimella, Shashkov
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Conclusions

• Optimization procedure to improve quality of surface meshes by node
repositioning

• CN optimization improves mesh quality (Jacobian condition number) as
much as possible

• RJ optimization improves mesh quality but also keeps nodes close to
original locations

• Nodes repositioned in series of local parametric spaces to minimize change
to surface characteristics

• Barycentric parametrization for triangles

• Triangular facetization of quads and higher polygons

• Procedures tested successfully for complex polygonal meshes

• Future work will make improvements to better handle polygons
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